Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Year range
1.
Rev. ANACEM (Impresa) ; 3(2): 24-27, dic. 2009. ilus, tab, graf
Article in Spanish | LILACS | ID: lil-613269

ABSTRACT

En la epilepsia del lóbulo temporal (ELT), el hipocampo y estructuras temporales adyacentes se convierten en foco epiléptico, lo que ocurre después de un insulto cerebral, como una convulsión prolongada (o Status Epilepticus [SE]). Posterior al insulto, en el hipocampo ocurre muerte neuronal por excitotoxicidad, es decir, por sobre estimulación de receptores glutamatérgicos tipo NMDA (R-NMDA) y síntesis de óxido nítrico (NO) por la óxido nítrico sintasa neuronal (nNOS), una enzima dependiente de calcio. Sin embargo, otras estructuras cerebrales, como la corteza cerebral, son más resistentes al daño excitotóxico. Postulamos que esta menor susceptibilidad de la corteza cerebral a la excitotoxicidad, se debería a neuroprotección dependiente de la neurotrofina BDNF, que se sabe estimula la sobrevida neuronal. Se utilizaron cultivos neuronales primarios de hipocampo y corteza cerebral. Para evaluar excitotoxicidad, se agregó NMDA 30 uM. Se utilizaron estrategias farmacológicas para poner a prueba esta hipótesis, como el uso de L-NNA (inhibidor NOS), y TrkB-Fc (atrapador de BDNF). Se evaluó el porcentaje de sobrevida celular mediante el test de exclusión de Azul de Tripán. La viabilidad de los cultivos después de agregar NMDA fueron: corticales 71,2 +/- 2,8 por ciento, hipocampales 24,6 +/- 2,2 por ciento (p<0,01). Al inhibir la NOS, la viabilidad fue: corticales 31 +/- 6,5 por ciento, hipocampales 79,2 +/- 5,4 por ciento (p<0,01). En ausencia de BDNF fue: corticales 28,7+/- 7,9 por ciento, hipocampales 88,9 +/- 3 por ciento (p<0,01). Concluimos que después de un insulto excitotóxico, BDNF/NO son neuroprotectores en neuronas corticales pero no hipocampales. La potenciación de mecanismos neuroprotectores podría ser una alternativa terapéutica en patologías que involucran muerte neuronal por excitotoxicidad.


In temporal-lobe epilepsy (TLE), the hippocampus and adjacent temporal structures become an epileptic focus following a brain insult, such as a prolonged seizure (or Status Epilepticus). After the insult, neuronal death by excitotoxicity ocurrs, this is, by over stimulation of NMDA-type glutamate receptors (R-NMDA) and nitric oxide sinthesis by neuronal nitric oxide synthase (nNOS), a calcium-dependant enzyme. However, other brain structures, such as the cerebral cortex, are much more resistant to an excitotoxic challenge. We propose that the decreased susceptibility of the cerebral cortex could be explained by neuroprotection mediated by the neurotrophin BDNF, which is known to stimulate neuronal survival. Primary hippocampal and cortical neuronalcultures were used. To evaluate excitotoxicity, 30 uM NMDA was added. The signaling pathways to be tested were inhibited by using pharmacological inhibitors: L-NNA (NOS inhibitor), and TrkB-Fc, a BDN-scavenger. Percentages of cellular survival were evaluated using the Trypan Blue exclusion test. The viability of the cultures after adding NMDA was: larger in cortical than in hippocampal cultures, 71,2 +/- 2,8 percent for cortical and 24,6 +/- 2,2 percent hippocampal cells (p<0,01). When inhibiting NOS, the viability was: 31 +/- 6,5 percent for cortical and 79,2 +/- 5,4 percent for hippocampal cells (p<0,01). In absence of BDNF, 28,7 +/- 7,9 percent of the cortical cells survived, while in the hippocampal cultures it was of 88,9 +/- 3 percent (p<0,01). We conclude that after an excitotoxic insult, BDNF/NO are neuroprotective in cortical but not hippocampal neurons. The potentiation of such neuroprotective mecanisms could be used as a therapeutic alternative in pathologies that involve neuronal death by excitotoxicity.


Subject(s)
Cerebral Cortex/metabolism , Brain-Derived Neurotrophic Factor/physiology , Neuroprotective Agents/metabolism , Nitric Oxide/physiology , Neurotoxicity Syndromes/metabolism , Cell Survival , Cytoprotection , Status Epilepticus/metabolism , Hippocampus/metabolism , Neurons/physiology , Neurotoxins/toxicity , Organ Culture Techniques , Receptors, N-Methyl-D-Aspartate/physiology
2.
Arq. neuropsiquiatr ; 67(3a): 684-688, Sept. 2009. ilus
Article in English | LILACS | ID: lil-523620

ABSTRACT

OBJECTIVE: Nestin is temporarily expressed in several tissues during development and it is replaced by other protein types during cell differentiation process. This unique property allows distinguishing between undifferentiated and differentiated cells. This study was delineated to analyze the temporal pattern of nestin expression in cortical radial glial cells of rats during normal development and of rats submitted to recurrent status epilepticus (SE) in early postnatal life (P). METHOD: Experimental rats were submitted to pilocarpine-induced SE on P7-9. The cortical temporal profile of nestin was studied by immunohistochemistry at multiple time points (P9, P10, P12, P16, P30 and P90). RESULTS: We observed delayed nestin down-regulation in experimental rats of P9, P10, P12 and P16 groups. In addition, few radial glial cells were still present only in P21 experimental rats. CONCLUSION: Our results suggested that SE during early postnatal life alters normal maturation during a critical period of brain development.


OBJETIVO: A nestina, temporariamente expressa em diversos tecidos durante o desenvolvimento, é substituída no processo de diferenciação celular, o que permite a distinção entre células diferenciadas e indiferenciadas. O objetivo deste estudo foi verificar o padrão temporal da expressão da nestina nas células da glia radial cortical de ratos durante o desenvolvimento normal e nos ratos submetidos a sucessivos status epilepticus (SE) no periodo pós-natal precoce (P). MÉTODO: Os animais foram submetidos ao SE induzido pela pilocarpina em P7-9. O perfil temporal da nestina foi estudado por imuno-histoquímica em P9, P10, P12, P16, P30 e P90. RESULTADOS: Nos ratos experimentais, observamos atraso no desaparecimento da nestina nos grupos P9, P10, P12 e P16. Ainda, encontramos algumas glias radiais corticais apenas em P21 experimental. CONCLUSÃO: Nossos resultados sugerem que o SE durante o desenvolvimento pós-natal precoce altera o processo de maturação durante um periodo crítico do desenvolvimento encefálico.


Subject(s)
Animals , Rats , Cerebral Cortex/cytology , Intermediate Filament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Status Epilepticus/metabolism , Animals, Newborn , Biomarkers/metabolism , Disease Models, Animal , Immunohistochemistry , Intermediate Filament Proteins/analysis , Nerve Tissue Proteins/analysis , Neuroglia/cytology , Pilocarpine/administration & dosage , Rats, Wistar , Status Epilepticus/chemically induced
3.
An. acad. bras. ciênc ; 81(3): 345-365, Sept. 2009. ilus, graf
Article in English | LILACS | ID: lil-523967

ABSTRACT

The systemic administration of a potent muscarinic agonist pilocarpine in rats promotes sequential behavioral and electrographic changes that can be divided into 3 distinct periods: (a) an acute period that built up progressively into a limbic status epilepticus and that lasts 24 h, (b) a silent period with a progressive normalization of EEG and behavior which varies from 4 to 44 days, and (c) a chronic period with spontaneous recurrent seizures (SRSs). The main features of the SRSs observed during the long-term period resemble those of human complex partial seizures and recurs 2-3 times per week per animal. Therefore, the pilocarpine model of epilepsy is a valuable tool not only to study the pathogenesis of temporal lobe epilepsy in human condition, but also to evaluate potential antiepileptogenic drugs. This review concentrates on data from pilocarpine model of epilepsy.


A administração sistêmica do potente agonista muscarínico pilocarpina em ratos promove alterações comportamentais e eletrográficas que podem ser divididas em três períodos distintos: (a) período agudo o animal evolui progressivamente para o status epilepticus, que perdura por até 24h; (b) período silencioso, caracterizado pela normalização progressiva do comportamento e do EEG e pode ter uma duração de 4 a 44 dias; período crônico, aparecimento de crises epilépticas espontâneas e recorrentes (SRSs). As características das SRSs observadas nos animas durante o período crônico são semelhantes às crises parciais complexas dos seres humanos e recorrem de 2-3 vezes por semana/animal. Além disso, o modelo de epilepsia induzido pela pilocarpina é válido não somente para se estudar a patogênese da epilepsia do lobo temporal em humanos como também para se testar a viabilidade de drogas antiepilépticas. Esse artigo de revisão aborda diversos aspectos do modelo de epilepsia induzido pela pilocarpina.


Subject(s)
Animals , Humans , Rats , Disease Models, Animal , Epilepsy, Temporal Lobe/chemically induced , Death, Sudden , Electroencephalography , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/pathology , Epilepsy, Temporal Lobe/physiopathology , Exercise/physiology , Muscarinic Agonists , Pilocarpine , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Status Epilepticus/pathology , Status Epilepticus/physiopathology , Time Factors
4.
Arq. neuropsiquiatr ; 66(3b): 731-735, set. 2008. ilus
Article in English | LILACS | ID: lil-495543

ABSTRACT

OBJECTIVE: As axon outgrowth and dentate granule cell neurogenesis are hallmarks of hippocampal development and are also the two morphologic changes in the structure of the dentate gyrus after status epilepticus (SE), we hypothesized that molecules involved in normal development may also play a role during epileptogenesis. METHOD: Using in situ hybridization, we have characterized mRNA expression of myocyte-specific enhancer binding factor 2C (MEF2C) in the dentate gyrus during development (P0, P3, P7, P14 and P28) and at multiple time points following pilocarpine-induced SE (3, 7, 14, 28 days after SE). RESULTS: It was demonstrated that MEF2C is up-regulated during development (P0, P3, P7, P14 and P28) and in the adult rat dentate gyrus following SE (3, 7, 14, 28 days after SE). CONCLUSIONS: The molecules controlling cell-fate decisions in the developing dentate gyrus are also operative during epileptogenesis.


OBJETIVO: Como o crescimento axonal e a neurogênese do giro denteado são características intrínsecas do hipocampo durante o processo de desenvolvimento, e também são duas alterações morfológicas na estrutura do giro denteado após o status epilepticus (SE), nós hipotetizamos que as moléculas envolvidas no processo normal do desenvolvimento hipocampal também podem participar do processo de epileptogênese. MÉTODO: Utilizando hibridização in situ, caracterizamos a expressão do RNAm do fator de transcrição myocyte-specific enhancer binding factor 2C (MEF2C) no giro denteado durante o desenvolvimento (P0, P3, P7, P14 e P28) e em diferentes períodos após o SE (3, 7, 14, 28 dias após SE). RESULTADOS: Foi demonstrado um aumento da expressão de MEF2C no giro denteado durante o desenvolvimento e no giro denteado de animais adultos após o SE. CONCLUSÃO: As moléculas que controlam o destino celular durante o processo de desenvolvimento também estão operativas durante o processo de epileptogênese.


Subject(s)
Animals , Male , Rats , Dentate Gyrus/growth & development , Myogenic Regulatory Factors/metabolism , Status Epilepticus/metabolism , Dentate Gyrus/chemistry , In Situ Hybridization , Pilocarpine/pharmacology , Rats, Sprague-Dawley , RNA, Messenger/metabolism , Status Epilepticus/chemically induced
5.
Arq. neuropsiquiatr ; 64(2a): 233-239, jun. 2006. ilus, tab
Article in English | LILACS | ID: lil-429690

ABSTRACT

O efeito do estado glicêmico sobre o desenvolvimento do status epilepticus (SE) foi estudado em animais de diferentes idades, submetidos ao modelo de epilepsia por pilocarpina. Grupos: I- Ratos com nove dias (P9): IA- Submetidos a 1SE; IB- Tratados com salina; IC- Hiperglicemia induzida; ID- Hiperglicemia induzida+SE; II- Ratos submetidos a 3 episódios consecutivos de SE em P7, P8 e P9; III- Ratos submetidos a 1SE em P17; IV- Ratos submetidos a 1SE em P21. Foram analisados no grupo I a morte celular hipocampal e a expressão do transportador de glicose GLUT3. Os resultados mostraram haver normoglicemia nos grupos IA, IB e II, hipoglicemia no grupo III e hiperglicemia no grupo IV, sendo a glicemia durante o SE, idade dependente. A hiperglicemia induzida durante o SE em P9 protegeu neurônios hipocampais e os grupos IC e ID apresentaram expressão aumentada de GLUT3, mostrando aumento no consumo de glicose pelo hipocampo.


Subject(s)
Animals , Male , Rats , /metabolism , Hippocampus/metabolism , Hyperglycemia/metabolism , Neurons/metabolism , Status Epilepticus/metabolism , Age Factors , Cell Count , Disease Models, Animal , Glycemic Index , Hippocampus/pathology , Hyperglycemia/chemically induced , Immunohistochemistry , Pilocarpine , Rats, Wistar
6.
Braz. j. med. biol. res ; 38(11): 1677-1682, Nov. 2005. ilus
Article in English | LILACS | ID: lil-414721

ABSTRACT

The thalamus is an important modulator of seizures and is severely affected in cholinergic models of epilepsy. In the present study, chronically epileptic rats had their brains processed for neo-Timm and acetylcholinesterase two months after the induction of status epilepticus with pilocarpine. Both controls and pilocarpine-treated animals presented neo-Timm staining in the anterodorsal nucleus, laterodorsal nucleus, reticular nucleus, most intralaminar nuclei, nucleus reuniens, and rhomboid nucleus of the thalamus, as well as in the zona incerta. The intensity of neo-Timm staining was similar in control and pilocarpine-treated rats, except for the nucleus reuniens and the rhomboid nucleus, which had a lower intensity of staining in the epileptic group. In animal models of temporal lobe epilepsy, zinc seems to modulate glutamate release and to decrease seizure activity. In this context, a reduction of neo-Timm-stained terminals in the midline thalamus could ultimately result in an increased excitatory activity, not only within its related nuclei, but also in anatomical structures that receive their efferent connections. This might contribute to the pathological substrate observed in chronic pilocarpine-treated epileptic animals.


Subject(s)
Animals , Male , Rats , Brain Mapping , Staining and Labeling/methods , Status Epilepticus/metabolism , Thalamic Nuclei/metabolism , Nerve Endings/metabolism , Zinc/metabolism , Acetylcholinesterase , Chronic Disease , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Pilocarpine , Rats, Wistar , Nerve Endings/pathology
SELECTION OF CITATIONS
SEARCH DETAIL